14. The work done on a particle of mass m by a force,

$$K\left[\frac{x}{(x^2+y^2)^{3/2}}\hat{i} + \frac{y}{(x^2+y^2)^{3/2}}\hat{j}\right]$$

(K being a constant of appropriate dimensions), when the particle is taken from the point (a, 0) to the point (0, a) along a circular path of radius a about the origin in the x-y plane is

(JEE Adv. 2013)

(a)
$$\frac{2K\pi}{a}$$
 (b) $\frac{K\pi}{a}$

(c)
$$\frac{K_1}{2a}$$

Correct option is D)

Given that,

Force F = K
$$\frac{x}{(x^2 + y^2)^{\frac{3}{2}}} \hat{1} + \frac{y}{(x^2 + y^2)^{\frac{3}{2}}} \hat{1}$$

Now, for the small distance is dr travelled by the particle in the direction

$$d\vec{r} = d\vec{x}\hat{1} + d\vec{y}\hat{1}$$

Now, small work done is

$$dw = F.d\vec{r}$$

The total work done

$$W = \int dw$$

$$W = \int F \cdot d\vec{r}$$

W =
$$\int K \left[\frac{x}{(x^2 + y^2)^{\frac{3}{2}}} \mathbf{j} + \frac{y}{(x^2 + y^2)^{\frac{3}{2}}} \mathbf{j} \right] \cdot \left[dx \hat{\mathbf{i}} + dy \right]$$

$$W = K \int_{a}^{0} \left[\frac{x}{(x^{2} + v^{2})^{\frac{3}{2}}} \right] + \int_{0}^{a} \left[\frac{y}{(x^{2} + v^{2})^{\frac{3}{2}}} \right]$$

Now, solve the first term of integration

Put,

$$x^2 + y^2 = t$$

2xdx = dt

Now.

$$= \frac{K}{2} \int_{a}^{0} \frac{2x dx}{(x^2 + y^2)^{\frac{3}{2}}}$$

$$K \int_{a}^{0} dt$$

$$=\frac{\mathbf{K}}{2}\int_{a}^{x}\frac{dt}{3}$$

$$=\frac{K}{2}\times 2a$$

$$= Ka^{\frac{1}{2}}$$

Now, similarly for second term of integration

$$=-Ka\overline{2}$$

Now, work done is

$$W = Ka^{\frac{1}{2}} - Ka^{\frac{1}{2}}$$

$$W = 0$$

Hence, the work done on a particle is 0